高威帷
开通时间:..
最后更新时间:..
高威帷从事计算凝聚态物理学的研究,主要致力于GW近似计算方法和相关高性能并行程序的开发,以及应用第一性原理计算方法研究能带结构、晶体结构、光吸收过程中的激子效应等。
高威帷是开源激发态性质计算软件包NanoGW的主要开发者之一。软件包括了GW近似,LR-TDDFT,和Bethe-Salpeter方程等方法[网址:https://www.osti.gov/doecode/biblio/60032;https://gitlab.com/real-space/nanogw];在Phys. Rev. Lett.(2篇),Nano Lett.(2篇),Phys. Rev. Appl./B/Mater.(10篇)和J. Chem. Theory Comput.(2篇)等计算凝聚态物理和计算原子分子物理领域主流期刊发表SCI论文29篇,h-index为15。
在国内外学术会议做邀请报告多次;为Nat. Comm., PRL,npj Comp. Mat.等期刊的审稿人;获国家级自然科学基金项目(一项)和企事业横向项目(一项)支持;大连市青年才俊。
欢迎研究生加入。如果你是本科生,需要完成毕业设计论文,也欢迎联系我。
电子邮件:weiweigao_at_dlut.edu.cn
研究生毕业去向:
2021.09 ~ 2024.06 李雪傲:中芯国际(北京)
研究生招生介绍:
(A kind reminder: My group do not have available positions for international graduate students in 2025.)
我们研究方向属于计算凝聚态物理,简单来说就是使用计算机模拟预测物质的新奇性质。平常研究工作主要与量子物理、计算机算法、物质(如半导体、团簇、二维材料)结构打交道。(详见“开云体育nba
”栏目)
如果你对其中两个方面比较感兴趣,那么欢迎考虑我们课题组。
如果你对材料的计算模拟、机器学习、编程、公式推导有强烈兴趣,那你可能非常适合我们课题组。
以下是我们组科研工作时常用的知识和技能:
1. 基本线性代数,微积分,复变函数知识
2. 基本固体物理,量子物理知识
3. python, numpy基本操作
4. Linux基本操作
5. 阅读英文论文
6. 附加(这些不强求,都能按研究需要现学):学过量子多体微扰理论,使用过DFT计算软件(VASP或Quantum Espresso),擅长英文写作且阅读英文刊物无压力,有一定Fortran或C语言编程经验,有MPI并行程序编程经验,调用编译过一些基础计算数学库(如Lapack,BLAS,FFTW,Scalapack),使用过流行机器学习框架(如Scikit Learn,Tensorflow)。
学习工作经历
学士:华中科技大学
博士:纽约州立大学布法罗分校,物理学院(导师:张培鸿 Peihong Zhang)
博士后:德州大学奥斯汀分校,Oden Institute for computational engineering & sciences(导师:James R. Chelikowsky)
副教授:开云平台首页 物理学院
研究方向
线性响应含时密度泛函理论,GW近似,Bethe-Salpeter方程等激发态计算方法开发
低维材料(团簇,分子,二维材料等)的第一性原理计算模拟
2025年论文
Efficiently charting the space of mixed vacancy-ordered perovskites by machine-learning encoded atomic-site information
Submitted
不同于大多数的材料性质预测模型(用于学习“结构->性质”的映射),本工作开的发机器学习方法(基于图神经网络)编码混合材料体系中(混合)元素占位信息,实现高效准确的材料性质预测。可在精度上媲美第一性原理方法,效率方面相比第一性原理方法提升多个数量级。我们把这一方法应用在一类混合空穴有序钙钛矿的能隙和形成能的预测,其中包含了对一系列中熵和高熵混合体系的性质预测。
Tunable multi-q states caused by frustrated and long-range exchange interactions in monolayer 1T-CrTe2 and related heterostructures
Physical Review B (2025), accepted
Abstract:
Recent studies show different results on the magnetic orders of monolayer 1T-CrTe2, an emerging two-dimensional (2D) magnetic material with a high magnetic transition temperature. Herein, based on first-principles calculations and Monte Carlo simulations, we find 1T-CrTe2 can host diverse magnetic orders, ranging from colinear antiferromagnetic states to helimagnetic states with single or multiple incommensurate propagation vectors, which can be sensitively tuned by strain and inter-layer coupling effects in Van der Waals heterostructures. Some of these magnetic orders can host Z6 topological domain-wall structures that are rarely seen in 2D magnets. While compressive biaxial strain tends to induce un-conventional antiferromagnetic states, increasing tensile biaxial strain generally stabilize 1T-CrTe2 in ferromagnetic orders with single-ion magnetic anisotropy energies affected by its substrates. The highly susceptible magnetic order of monolayer 1T-CrTe2 originates from the synergic effects between the triangular Cr lattice that can mediate magnetic frustration and the itinerant electrons that can lead to long-range magnetic couplings and significant charge transfer with substrates.
2024年论文
Cluster Sliding Ferroelectricity in Trilayer Quasi-Hexagonal C60
npj Computational Materials volume 11, Article number: 5 (2025)
arXiv:2407.13985
doi.org/10.21203/rs.3.rs-4825496/v1
www.nature.com/articles/s41524-024-01511-3
计算发现多层六方晶C60二维材料存在滑移铁电相,是一种罕见的单质铁电体系。(Electric polarization typically originates from non-centrosymmetric charge distributions in compounds. In elemental crystalline materials, chemical bonds between atoms of the same element favor symmetrically distributed electron charges and centrosymmetric structures, making elemental ferroelectrics rare. Compared to atoms, elemental clusters are intrinsically less symmetric and can have various preferred orientations when they are assembled to form crystals. Consequently, the assembly of clusters with different orientations tends to break the inversion symmetry. By exploiting this concept, we show that sliding ferroelectricity naturally emerges in trilayer quasi-hexagonal phase (qHP) C60, a cluster-assembled carbon allotrope recently synthesized. Compared to many metallic or semi-metallic elemental ferroelectrics, trilayer qHP C60’s have sizable band gaps and several ferroelectric structures, which are distinguishable by measuring their second-harmonic generation (SHG) responses. Some of these phases show both switchable out-of-plane and in-plane polarizations on the order of 0.2 pC/m. The out-of-plane and in-plane polarizations can be switched independently and enable an easy-to-implement construction of Van der Waals homostructures with ferroelectrically switchable chirality.)
Robust altermagnetism and compensated ferrimagnetism in MnPX3-based (X = S or Se) heterostructures
arXiv:2412.17232
https://arxiv.org/abs/2412.17232
范德瓦尔斯异质结可诱导MnPX3体系出现交变磁性或补偿亚铁磁。其中,CuInP2S6等铁电衬底材料可通过铁电极化的反转,非易失性地调控MnPX3能带的自旋劈裂。
Efficient Full-frequency GW Calculations using a Lanczos Method
Phys. Rev. Lett. 132, 126402 (2024) (Editor's Suggestion)
预印本论文链接(https://arxiv.org/abs/2310.20103)
这项工作提出了一个新理论方法,运用了Lanczos算法实现高效的电子结构计算(基于GW近似),可以简称为LanczosGW方法。
几年前看到Lanczos方法在TDDFT和Bethe-Salpeter方程中的应用时,就隐约感觉到可以移植到GW近似计算。但是,奈何线性代数功底实在太差,学得比较慢,一直到去年才想明白具体要怎么用。我们实现Lanczos方法后,测试发现计算效率出乎意料的高,而且很适合GPU加速,适配了主流GPU芯片(NVIDIA GPU或国产芯片)。开发工作完成以后还是很开心的。
下一阶段的工作是:改进、扩展、应用这个方法。
2023年论文
Rich structural polymorphism of monolayer polymeric from cluster rotation
Physical Review Materials 7 (11), 114001
Giant excitonic effects in vacancy-ordered double perovskites
Physical Review B 107 (23), 235119
我们发现空穴有序的双钙钛矿物质,有非常大的激子结合能,比普通的半导体大一到两个数量级,甚至比常见的单层二维材料的激子结合能还大。
刚算出来的时候,感觉很反常,还以为算错了。仔细分析以后,我们发现这类材料的结构中有一些正八面体形状的零维基元,激子产生后都局域在这些正八面体上了。这一点非常类似于分子晶体,低能量激子会局域在单个分子附近,形成Frenkel激子。
2022年论文
Multiferroicity in a Two-Dimensional Non-van der Waals Crystal of AgCr2X4 (X = S or Se)
The Journal of Physical Chemistry Letters 13 (48), 11346-11353 (2022)
Out-of-plane polarization and topological magnetic vortices in multiferroic CrPSe3
W Gao, J Zhao*, JR Chelikowsky*
Physical Review Materials 6 (10), L101402 (2022)
Sumanene Monolayer of Pure Carbon: A Two‐Dimensional Kagome‐Analogy Lattice with Desirable Band Gap, Ultrahigh Carrier Mobility, and Strong Exciton Binding Energy
X Shi, W Gao, H Liu, ZG Fu, G Zhang, YW Zhang, T Liu, J Zhao, J Gao*
Small 18 (40), 2203274 (2022)
Strong Dzyaloshinskii-Moriya interaction in monolayer CrI3 on metal substrates
F Zhang, X Li, Y Wu, X Wang, J Zhao*, W Gao*
Physical Review B 106 (10), L100407 (2022)
Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4
Y Wu, Z Tang, W Xia, W Gao, F Jia, Y Zhang, W Zhu, W Zhang, P Zhang
npj Computational Materials 8 (1), 129 (2022)
Phonon-Assisted Nonradiative Recombination Tuned by Organic Cations in Ruddlesden-Popper Hybrid Perovskites
F Zhang, X Wang, W Gao*, J Zhao*
Physical Review Applied 17 (6), 064016 (2022)
Effect of liquidlike cations on electronic and defect properties of solid solutions of Cu2Te and Ag2Te
X Wu, C Ming, W Gao, J Shi, K Zhao, H Wang, YY Sun
Physical Review B 105 (19), 195206 (2022)
Numerical methods for efficient GW calculations and the applications in low-dimensional systems
W Gao, W Xia, P Zhang, J Chelikowsky, J Zhao
Electronic Structure (2022)
Quasiparticle energies and optical excitations of 3C-SiC divacancy from GW and GW plus Bethe-Salpeter equation calculations
W Gao, FH da Jornada, M Del Ben, J Deslippe, SG Louie, J Chelikowsky
Physical Review Materials 6 (3), 036201 (2022)
入职大连理工前的代表论文
1. W. Gao, W. Xia, X. Gao, P. Zhang, Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions,
Scientific Report 6, 36849 (2016)
2. W. Gao, X. Gao, T. A. Abtew, Y. Sun, S. Zhang, P. Zhang, Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects,
Phys. Rev. B 93, 085202 (2016)
3. Y. Tian#, W. Gao# (共同一作), E. Henrikson, J. Chelikowsky, L. Yang, Optically Driven Magnetic Phase Transition of Monolayer RuCl3,
Nano Lett. 19, 7673-7680 (2019)
4. W. Gao* and J. Chelikowsky*, Accelerating time-dependent density functional theory and GW calculations for molecules and nanoclusters with symmetry adapted interpolative separable density fitting,
Journal of Chemical Theory and Computation, 16, 2216 – 2223 (2020)
5. W. Xia, W. Gao, G. Candales, Y. Wu, W. Ren, W. Zhang and P. Zhang, Combined subsampling and analytical integration for efficient large-scale GW calculations for 2D systems,
npj Computational Materials, 6, 118 (2020)
6. W. Gao, W. Xia, Y. Wu, W. Ren, X. Gao, P. Zhang*, .Quasiparticle band structures of CuCl, CuBr, AgCl, and AgBr: The extreme case, Phys. Rev. B 98 (4), 045108 (2018)
7. W. Gao*, J. Chelikowsky*, Prediction of intrinsic ferroelectricity and large piezoelectricity in monolayer arsenic chalcogenides,
Nano Lett. 20 (11), 8346-8352 (2020)
8. W. Gao, X. Gao, T. A. Abtew, Y. Sun, S. Zhang, P. Zhang, Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects,
Phys. Rev. B 93, 085202 (2016)
9. TA Abtew, W. Gao, X Gao, YY Sun, SB Zhang, P Zhang, Theory of Oxygen-Boron Vacancy Defect in Cubic Boron Nitride: A Diamond Isoelectronic Center,
Phys. Rev. Lett. 113 (13), 136401 (2014)
所有论文请见:
https://scholar.google.com/citations?hl=en&user=mD6gN_cAAAAJ
https://www.webofscience.com/wos/author/record/484143
2004.9 -- 2007.6
长沙市第一中学
 \
2007.9 -- 2011.6
华中科技大学
 应用物理
 学士
2011.9 -- 2017.5
美国纽约州立大学布法罗分校
 物理
 博士
2017.5 -- 2020.6
美国德州大学奥斯汀分校 Oden计算科学和开云体育nba 院 博士后
2021.1 -- 至今
开云平台首页 物理学院 副教授